ISBN 9781498761772
Copertina rigida
Pagine 572
Febbraio 2018
CRC Press
Prezzo di copertina Euro 137,20
Sconto 10%
The book deals with the fundamentals, theoretical bases, and design methodologies of conventional internal combustion engine (ICE) vehicles, electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). The design methodology is described in mathematical terms, step-by-step, and the topics are approached from the overall drive train system, not just individual components. Furthermore, in explaining the design methodology of each drive train, design examples are presented with simulation results. "This book is an introduction to automotive technology, with specific reference to battery electric, hybrid electric, and fuel cell electric vehicles. It could serve electrical engineers who need to know more about automobiles or automotive engineers who need to know about electrical propulsion systems. For example, this reviewer, who is a specialist in electric machinery, could use this book to better understand the automobiles for which the reviewer is designing electric drive motors. While the first chapter is historical in nature, the second chapter is a good introduction to automobiles, including dynamics of propulsion and braking. The third chapter discusses, in some detail, spark ignition and compression ignition (Diesel) engines. The fourth chapter discusses the nature of transmission systems." ? James Kirtley, Massachusetts Institute of Technology, USA "The third edition covers extensive topics in modern electric, hybrid electric, and fuel cell vehicles, in which the profound knowledge, mathematical modeling, simulations, and control are clearly presented. Featured with design of various vehicle drivetrains, as well as a multi-objective optimization software, it is an estimable work to meet the needs of automotive industry." ? Haiyan Henry Zhang, Purdue University, USA "As we make the transition to clean, low-carbon vehicles, analytics will be increasingly important to understand the environmental and performance trade-offs. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles provides the needed analytic foundation for this vehicle revolution." ? Daniel Kammen, University of California, Berkeley, USA "This book clearly explains the mechanical and electrical principles of the modern hybrid electric powertrains. It is an excellent textbook, not only for the beginners, but also for the experts." ? Jae wan Park, University of California, Davis, USA "The extensive combined experience of the authors has produced an extensive text covering a broad range with detailed topics on the principles, design, and architectures of Modern Electric, Hybrid Electric, and Fuel Cell Vehicles in a well-structured, clear, and concise manner. The book offers a complete overview of technologies, their selection, integration & control. The technical chapters are complemented with example problems and user guides to assist the reader in practical calculations through the use of common scientific computing packages. It will be of interest mainly to research postgraduates working in this field, as well as established academic researchers, industrial R&D engineers, and allied professionals." ? Christopher Donaghy-Spargo, Durham University, United Kingdom "The book is outstanding in providing a comprehensive coverage, in terms of both collection of relevant subject matters in the field, and wide span of content levels to meet needs ranging from university senior technical elective courses to practicing professionals." ? Jerry C. Ku, Wayne State University, USA "This book addresses an important topic, guiding the reader through the fundamentals of longitudinal vehicle dynamics, conventional powertrains and technologies, all the way through to modern electric and electric hybrid propulsion systems. The vital components that make up the electric powertrain are described in detail, particularly traction motors, batteries, other storage technologies, and fuel cells. The subject of hybrid vehicles is a complex one, and the number of variations created by choice of components and control strategies is substantial. This book would be ideal for engineers interested to retrain to move into this subject from conventional internal combustion engines and mechanical transmissions, as well as masters and research students." ? Keith Robert Pullen, City University of London, United Kingdom